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Supplementary Methods. Exome sequencing and analysis, Immunohistochemistry and Western blotting. 

 

Exome sequencing and analysis: Whole exome sequencing was performed by first fragmenting DNA and then creating libraries that were enriching for 

exon-coding regions using various capture reagents. The capture reagent varied depending on where and when the capture was performed as exome 

sequencing was completed at the Baylor College of Medicine, the University College London and the University of Manchester (details on each sample are 

given in Supplementary Table 1). The capture reagent was either Illumina's TruSeq capture reagent (Illumina Inc., San Diego, CA), Agilent's SureSelect 

capture reagent (Agilent Technologies, Santa Clara, CA), or Roche Nimblegen's Baylor VCRome capture reagent (Roche NimbleGen, Madison, WI). 

Capture was performed according to the manufacturer’s protocol. Next-generation sequencing was performed on Illumina HiSeq 2000 (Illumina, San 

Diego, CA) for all samples. Sequence reads were aligned to the hg19 iteration of the reference human genome using BWA (v 0.5.9)1. Base score 

recalibration and local realignment for indel (insertion or deletion) detection and duplicate removal2,3 were performed with GATK. SNVs were called using 

Samtools mpileup (version 0.1.17)4 and short indels (insertions and deletion) were called using Samtools5, Atlas-INDEL6, and GATK3 (indels included in 

our variant list had to be detected by all three programs, to decrease false-positive rates).  Variants were annotated with ANNOVAR7. Protein-impacting 

variants that are rare (minor allele frequency <1%) or novel were preferentially explored. Candidate genes and variants were then assessed using 

databases such as dbNSFP which annotates the functional impact and the conservation of the mutated residues8, Uniprot for the function of the proteins9, 

NeXtProt10 for the expression pattern, Mouse Genome Informatics11 and NCBI’s OMIM12 for the phenotypes in mice and humans, and finally 

Genedistiller213 for a combination of some of the above databases. Homozygosity mapping from exome data using VCF variant files was achieved using 

HomozygosityMapper14 and regions of homozygosity were analyzed for known disease-causing genes using the Genomic Oligoarray and SNP array 

evaluation tool v1.015. We define variants as rare when they have a minor allele frequency (MAF) below 1% in the Exome Variant Server16, as novel when 

absent from this database, and as protein-impacting when variants change the coding sequence of the protein (substituting an amino acid, causing an in-

frame or out-of-frame deletion or insertion, a premature stop codon or altering a stop codon) or potentially affect splicing (nucleotide change within five 

bases of splice-donor or splice-acceptor sites).   

 

Immunohistochemistry: C57BL/6 whole embryos (E16.5) or limbs (P2) were fixed in 4% PFA at 4°C overnight, washed with PBS, dehydrated using ethanol 

then embedded in paraffin for sectioning. Sectioned tissues were deparaffinized with xylene then rehydrated.  Sections were rinsed with PBS, blocked with 
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3% Donkey Serum in 0.1% BSA and 0.1% Triton. Slides were then incubated overnight with a mouse monoclonal IgG1 antibody against an epitope 

mapping between amino acids 437-559 at the C-terminus of TBC1D24 of human origin (clone G-6, catalog number sc-390237, Santa Cruz Biotechnology, 

Santa Cruz, CA). The antibody is provided at 200 µg/ml and was diluted at 1:200 for the immunohistochemistry (a control slide without primary antibody 

was also included).  After rinsing, the slides were incubated for 1h in Alexa Fluor® 594 goat anti-rabbit IgG (Invitrogen product number A-11012, 1:600 

final dilution in blocking buffer). After further rinsing, slides were mounted with ProLong® Gold antifade reagent with DAPI for imaging. Slides were viewed 

with a Zeiss Axioplan 2 fluorescence microscope, and images were taken using the same exposure parameters consistently for all images. 

 

Western blotting: Proteins were extracted in 50 mM Tris-HCl pH7.5, 150 mM NaCl, 1% Triton X100, 1X Complete Protease Inhibitor Cocktail (Roche 

NimbleGen, Madison, WI), resolved in 4-15% gradient SDS-PAGE gels (Bio-Rad, Hercules, CA) and transferred to PVDF membranes for western blot 

analyses.  For TBC1D24, the same antibody was used as for immunohistochemistry, at a dilution of 1:1000 (for the mouse brain lysate) or 1:100 (for the 

human fibroblast lysate), then an HRP-conjugated rabbit anti-mouse IgG antibody was used for detection (1:10,000 dilution, BioRad, Hercules, CA), and 

for control, a mouse monoclonal antibody to GAPDH directly conjugated to HRP (1:20,000 dilution, Clone GAPDH-71.1, Sigma-Aldrich Co, St-Louis, MO) 

was used. 
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Supplementary Table 1. Genetic analyses performed for each affected individual. 

Individual 
number 

Exome sequencing Genetic mapping Sanger sequencing 

1 
Exome sequencing (Nimblegen Baylor VCRome, 90X 

average coverage, 90% targeted base covered at ≥20X). 
 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents. 

2a 
Exome sequencing (Nimblegen Baylor VCRome, 95X 

average coverage, 90% targeted base covered at ≥20X). 
 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents 

2b   
Sanger sequencing for TBC1D24 mutations 

identified in sibling. Confirmation of mutations in 
each parent. 

3 
Exome sequencing (Nimblegen Baylor VCRome, 144X 

average coverage, 95% targeted base covered at ≥20X). 
 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents. 

4 
Exome sequencing (Nimblegen Baylor VCRome, 72X 

average coverage, 86% targeted base covered at ≥20X). 

Homozygosity 
mapping by SNP 

array. 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents. 

5a 
Exome sequencing, completed after the initial 15 sample 

analysis (Nimblegen Baylor VCRome, 99X average 
coverage, 92% targeted base covered at ≥20X). 

 
Sanger sequencing confirmation of TBC1D24 

mutations in proband and parents. 

5b   
Sanger sequencing for variants identified in sibling. 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents. 

6   
Sanger sequencing for TBC1D24. Confirmation of 

TBC1D24 mutations in one parent. 

7   
Sanger sequencing for TBC1D24. Confirmation of 

TBC1D24 mutations in parents. 

8 
Exome sequencing (Illumina TruSeq, 70X average 

coverage, 89% targeted base covered at ≥20X). 

Homozygosity 
mapping from exome 

data. 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents. 

9 
Exome sequencing (Agilent SureSelect, 105X average 

coverage, 92% targeted base covered at ≥20X). 
 

Sanger sequencing confirmation of TBC1D24 
mutations in proband and parents. 

10   Sanger sequencing for TBC1D24. 

11 
Exome sequencing (Nimblegen Baylor VCRome, 122X 

average coverage, 91% targeted base covered at ≥20X). 
  

12a 
Exome sequencing (Nimblegen Baylor VCRome, 94X 

average coverage, 90% targeted base covered at ≥20X). 
Haplotype mapping by 

SNP array. 
 

12b  
Haplotype mapping by 

SNP array. 
 

13   Sanger sequencing for TBC1D24. 
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14   Sanger sequencing for TBC1D24. 

15 
Exome sequencing (Nimblegen Baylor VCRome, 90X 

average coverage, 90% targeted base covered at ≥20X). 
  

16 
Exome sequencing (Agilent SureSelect, 59X average 

coverage, 74% targeted base covered at ≥20X). 
  

17   Sanger sequencing for TBC1D24. 

18 
Exome sequencing, completed after the initial 15 sample 

analysis (Nimblegen Baylor VCRome, 135X average 
coverage, 90% targeted base covered at ≥20X). 

 Homozygosity mapping from exome data. 

19 
Exome sequencing (Nimblegen Baylor VCRome, 171X 

average coverage, 95% targeted base covered at ≥20X). 
  

20   Sanger sequencing for TBC1D24. 

21   Sanger sequencing for TBC1D24. 

22 
Exome sequencing (Agilent SureSelect, 54X average 

coverage, 73% targeted base covered at ≥20X). 
  

23 
Exome sequencing (Agilent SureSelect, 57X average 

coverage, 72% targeted base covered at ≥20X). 

Homozygosity 
mapping from exome 

data. 
 

24 
Exome sequencing (Nimblegen Baylor VCRome, 125X 

average coverage, 94% targeted base covered at ≥20X). 

Homozygosity 
mapping by SNP 

array. 
 

25   Sanger sequencing for TBC1D24. 

26 
Exome sequencing (Illumina TruSeq, 33X average 

coverage, 66% targeted base covered at ≥20X). 
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Supplementary Table 2. Primers used for Sanger sequencing and real-time PCR. 

Primer name Oligonucleotide sequence 

Sanger sequencing of human genomic DNA (coding exons and intron-
exon boundaries for TBC1D24 variant 1, NCBI CCDS ID#55980.1)  

TBC1D24ex2F TTTAGCCACTCTGTCCTCCC 

TBC1D24ex2R TCACGCCAGACACGTCC 

TBC1D24ex3F GGGGATCGGTACTCACACTAAC 

TBC1D24ex3R AGTCAGCCTGGTGGAAAGAC 

TBC1D24ex4F GCTCTGGGGCATACCTCG 

TBC1D24ex4R TCTGTGGGCAGGACACG 

TBC1D24ex5F GAGGGTGTGCAGGGTGAC 

TBC1D24ex5R GAAGCCCATCAGAGCCAG 

TBC1D24ex6F TAGTCTGGAGCACAGGGACG 

TBC1D24ex6R GGTGCTCCTGGAGGGATG 

TBC1D24ex7F ATGAAACGGGTTGTGGCTC 

TBC1D24ex7R CTTCAGCTGCCCGGACC 

TBC1D24ex8F2 GCCTGGGTCAGTGCTGATAG   

TBC1D24ex8R2 GGCTGCCTAGAGAGGCTCAG   

Real-time PCR for human samples 

hTBC1D24-1:1255U28 TTTGGGACCGGAGAATGCTTTGTGTTTA 

hTBC1D24-1:1441L26 TCGGTCTTGGAGGGCAGGTTGAAGTG 

Real-time PCR for mouse samples 

mTbc1d24-1:5563U30 AGACCTGCTCTCTCATATCTTCACTAAATC 

mTbc1d24-1:5714L26 TGGCACTCATGCTTGACATAACAACT 
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Supplementary Table 3. Table illustrating the process by which we identified recurrent mutations in TBC1D24 in the cohort of individuals with DOOR/S 
syndrome. As described in the methods and results, the automated variant identification pipeline leaves several “false-positive” variants which need to be 
visually assessed on the exome alignments and compared to controls. 
 

Exomes with genes in common 
(every possible combination of 

exomes) 

Number of genes in the automated output 
following an autosomal recessive 

inheritance pattern (1 homozygous variant 
or 2 heterozygous variants) 

Number of genes excluded by 
visualization (exclusion of false-

positive calls from the 
automated pipeline). 

Genes remaining after  
visualization and curation 

of the candidate list 

15 exomes 1 1 0 

14 exomes 5 5 0 

13 exomes 3 3 0 

12 exomes 3 3 0 

11 exomes 8 8 0 

10 exomes 8 8 0 

9 exomes 10 10 0 

8 exomes 24 24 0 

7 exomes 25 25 0 

6 exomes 31 30 1 (TBC1D24) 
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Supplementary Table 4. Annotations for all known variants in TBC1D24. 

Cohort hg19 position 
dbSN
P ID 

cDNA 
position 

(NM_001199
107.1) 

Protein variant Variant type 

Minor allele 
frequency (MAF) in 

EVS/number of 
chromosomes 

Homozygo
sity 

frequency 
in EVS 

Conser
vation 
Score 

PhastC
ons* 

Conse
rvation 
Score 
GERP

* 

Grant
ham 
Scor
e* 

Polyphen2 
(Class:Score)* 

DOORS 
syndrome 

chr16:2546207C>G 
rs2012
57588 

c.58C>G p.(Gln20Glu) missense 0/12714 0 0.996 5.6 29 N/A 

DOORS 
syndrome 

chr16:2546267C>T N/A c.118C>T p.(Arg40Cys) missense 0/12620 0 0.959 5.6 180 
probably-

damaging:1 
DOORS 

syndrome 
chr16:2546268G>T N/A c.119G>T p.(Arg40Leu) missense 0/12634 0 0.995 5.6 102 

probably-
damaging:1 

DOORS 
syndrome 

chr16:2546477G>A N/A c.328G>A p.(Gly110Ser) missense 0/12768 0 0.831 5.6 56 
probably-

damaging:1 
DOORS 

syndrome 
chr16:2546873C>T N/A c.724C>T p.(Arg242Cys) missense 0/12732 0 0.996 4.2 180 

probably-
damaging:1 

DOORS 
syndrome 

chr16:2548254G>T N/A c.999G>T p.(Leu333Phe) missense 0/12722 0 0.997 2.55 22 
probably-

damaging:1 
DOORS 

syndrome 
chr16:2548263delT N/A c.1008delT p.(His336Glnfs*12) frameshift 2/12234=0.00033 0 0.216 5.6 N/A N/A 

DOORS 
syndrome 

chr16:2549426G>A N/A 
c.1206+5G>

A 
splicing intron 0/12432 0 0.97 4.71 N/A N/A 

Other 
epileptic 

syndromes 
chr16:2546588G>C N/A c.439G>C p.(Asp147His) missense 1/12827=0.0001 0 0.476 5.6 81 

probably-
damaging:1 

Other 
epileptic 

syndromes 
chr16:2546617C>A N/A c.468C>A p.(Cys156*) stop-gain 0/12896 0 1 4.11 N/A N/A 

Other 
epileptic 

syndromes 
chr16:2546835T>C N/A c.686T>C p.(Phe229Ser) missense 0/12672 0 0.877 5.43 155 

probably-
damaging:0.99

9 

Other 
epileptic 

syndromes 
chr16:2546900T>C N/A c.751T>C p.(Phe251Leu) missense 0/12738 0 1 5.24 22 

possibly-
damaging:0.87

1 

Other 
epileptic 

syndromes 

chr16:2547714_25
47715delGT 

N/A 
c.969_970de

lGT 
p.(Ser324Thrfs*3) frameshift N/A 0 0.991 -4.68 N/A N/A 

Other 
epileptic 

syndromes 
chr16:2550823C>T N/A c.1544C>T p.(Ala515Val) missense 0/12790 0 0.965 5.79 64 

probably-
damaging:1 

EVS chr16:2546171T>C 
rs7758
5883 

c.22T>C p.(Cys8Arg) missense 1/12653=0.00016 0 1 4.48 180 benign:0.0 

EVS chr16:2546225G>T N/A c.76G>T p.(Glu26*) stop-gain 1/12713=0.00016 0 1 4.63 N/A N/A 

EVS chr16:2546226A>T N/A c.77A>T p.(Glu26Val) missense 1/12711=0.00016 0 1 5.6 121 benign:0.007 

EVS chr16:2546318C>T 
rs2021
62520 

c.169C>T p.(Arg57Cys) missense 25/12695=0.00393 0 1 4.59 180 
probably-

damaging:0.99
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4 

EVS chr16:2546319G>A N/A c.170G>A p.(Arg57His) missense 1/12779=0.00016 0 0.997 2.59 29 benign:0.002 

EVS chr16:2546327C>T N/A c.178C>T p.(Arg60Trp) missense 1/12765=0.00016 0 0.935 3.48 101 
probably-

damaging:0.99
4 

EVS chr16:2546328G>A 
rs2002
26466 

c.179G>A p.(Arg60Gln) missense 5/12767=0.00078 0 0.629 -0.34 43 benign:0.03 

EVS chr16:2546346C>T N/A c.197C>T p.(Thr66Met) missense 1/12821=0.00016 0 0.953 5.6 81 
possibly-

damaging:0.64
5 

EVS chr16:2546366G>A N/A c.217G>A p.(Val73Met) missense 2/12856=0.00031 0 1 5.6 21 
probably-

damaging:1.0 

EVS chr16:2546489G>A N/A c.340G>A p.(Val114Met) missense 2/12780=0.00031 0 0.998 5.6 21 
probably-

damaging:1.0 

EVS chr16:2546492C>T N/A c.343C>T p.(Arg115Cys) missense 1/12779=0.00016 0 1 5.6 180 
probably-

damaging:1.0 

EVS chr16:2546493G>A 
rs2011
74513 

c.344G>A p.(Arg115His) missense 1/12785=0.00016 0 1 4.63 29 benign:0.1 

EVS chr16:2546606G>A N/A c.457G>A p.(Glu153Lys) missense 1/12873=0.00016 0 0.997 5.27 56 
probably-

damaging:1.0 

EVS chr16:2546642G>A 
rs2009
26225 

c.493G>A p.(Gly165Ser) missense 22/12798=0.00343 0 0.072 -1.79 56 benign:0.001 

EVS chr16:2546790G>A 
rs2003
24356 

c.641G>A p.(Arg214His) missense 14/12708=0.0022 0 1 5.43 29 
probably-

damaging:0.99
7 

EVS chr16:2546840G>A N/A c.691G>A p.(Val231Ile) missense 1/12699=0.00016 0 0.959 5.43 29 
possibly-

damaging:0.93
5 

EVS chr16:2546880C>T N/A c.731C>T p.(Ala244Val) missense 1/12727=0.00016 0 0.153 5.24 64 
probably-

damaging:1.0 

EVS chr16:2546883T>C N/A c.734T>C p.(Leu245Pro) missense 1/12725=0.00016 0 0.927 5.24 98 
probably-

damaging:1.0 

EVS chr16:2546934C>T 
rs2010
60500 

c.785C>T p.(Ser262Leu) missense 32/12720=0.00502 0 0.467 5.24 145 
possibly-

damaging:0.93
4 

EVS chr16:2546957C>T N/A c.808C>T p.(Arg270Cys) missense 1/12851=0.00016 0 0.994 5.24 180 
probably-

damaging:1.0 

EVS chr16:2547020G>A N/A c.871G>A p.(Ala291Thr) missense 1/12827=0.00016 0 0.959 4.09 58 
possibly-

damaging:0.86
3 

EVS chr16:2547026C>T N/A c.877C>T p.(Arg293Cys) missense 1/12835=0.00016 0 1 5.09 180 
probably-

damaging:1.0 

EVS chr16:2547027G>A 
rs1997
00840 

c.878G>A p.(Arg293His) missense 7/12807=0.00109 0 1 5.09 29 
probably-

damaging:1.0 

EVS chr16:2547034C>G 
rs7276
8728 

c.885C>G p.(Phe295Leu) missense 106/12472=0.01685 0.00016 0.989 -0.32 22 benign:0.114 

EVS chr16:2547101G>A N/A c.952G>A p.(Val318Met) missense 1/12473=0.00016 0 0.94 5.09 21 
probably-

damaging:0.99
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2 

EVS chr16:2547122G>T N/A c.965+8G>T Near splice site Intronic 1/12371=0.00016 0 0 -4.14 N/A N/A 

EVS chr16:2548294G>A N/A c.1039G>A p.(Val347Met) missense 1/12751=0.00016 0 1 5.6 21 
probably-

damaging:0.99
9 

EVS chr16:2548307G>A N/A c.1052G>A p.(Arg351Lys) missense 1/12769=0.00016 0 0.995 5.6 26 
probably-

damaging:0.99
3 

EVS chr16:2548327C>A N/A c.1072C>A p.(Pro358Thr) missense 1/12651=0.00016 0 1 5.6 38 
probably-

damaging:1.0 

EVS chr16:2549352C>T 
rs7349
0287 

c.1143-6C>T Near splice site intronic 242/12140=0.03909 0.00113 0.179 -0.84 N/A N/A 

EVS chr16:2549411C>T 
rs6173
1477 

c.1196C>T p.(Thr399Met) missense 35/12471=0.0056 0 0.991 5.67 81 
possibly-

damaging:0.94 

EVS chr16:2549891A>C N/A c.1262A>C p.(Lys421Thr) missense 1/12319=0.00016 0 0.995 5.65 78 benign:0.328 

EVS chr16:2550293G>A 
rs1413
99869 

c.1327G>A p.(Glu443Lys) missense 22/12426=0.00353 0 0.992 5.36 56 
probably-

damaging:0.99
3 

EVS chr16:2550333C>T 
rs2006
41000 

c.1367C>T p.(Pro456Leu) missense 2/12572=0.00032 0 0 2.01 98 benign:0.0 

EVS chr16:2550347G>A 
rs2019
11646 

c.1381G>A p.(Ala461Thr) missense 2/12600=0.00032 0 0 -3.57 58 benign:0.0 

EVS chr16:2550350G>A N/A c.1384G>A p.(Glu462Lys) missense 2/12606=0.00032 0 0.681 4.2 56 benign:0.0 

EVS chr16:2550377G>A N/A c.1411G>A p.(Ala471Thr) missense 1/12561=0.00016 0 0 -10.2 58 benign:0.0 

EVS chr16:2550393C>A 
rs2022
16463 

c.1427C>A p.(Ala476Asp) missense 38/12436=0.00609 0 0.003 3.84 126 
possibly-

damaging:0.83
5 

EVS chr16:2550456T>C N/A c.1490T>C p.(Met497Thr) missense 1/12395=0.00016 0 1 5.49 81 
possibly-

damaging:0.84
8 

EVS chr16:2550849C>T 
rs7864
4690 

c.1570C>T p.(Arg524Trp) missense 1/12765=0.00016 0 1 5.79 101 benign:0.106 

EVS chr16:2550904A>G N/A c.1625A>G p.(Asn542Ser) missense 1/12767=0.00016 0 1 3.39 46 benign:0.001 

EVS chr16:2550921G>A 
rs2016
49140 

c.1642G>A p.(Val548Met) missense 2/12718=0.00031 0 0.039 -2.49 21 benign:0.115 

*Notes: N/A, Not available. Data for the mutations in DOORS and other epileptic syndromes were generated using the SeattleSeq Annotation server: 

http://snp.gs.washington.edu/SeattleSeqAnnotation137. Data for other TBC1D24 variants found in the population are from the Exome Variant Server 

(EVS), NHLBI GO Exome Sequencing Project, Seattle, WA (http://evs.gs.washington.edu/EVS/), data release ESP6500SI-V2 accessed July 27th 2013. 

PhastCons score17: conservation of the mutated nucleotide among 17 vertebrate species, with 1 being the most conserved. Genomic Evolutionary Rate 

Profiling (GERP) score18: A score for constrained DNA elements in 29 mammalian species, ranges from -12.3 to 6.17, with 6.17 being the most conserved. 

Grantham score19: Categorizes codon replacements into classes of increasing chemical dissimilarity, ranges from 5 to 215, with 5 being the most 

similar.PolyPhen2 (Class:Score): Prediction of possible impact of an amino acid substitution on protein structure and function based on Polymorphism 

Phenotyping (PolyPhen2) program. It lists both the PolyPhen2 prediction class and the score separated by a colon.  
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Supplementary Table 5. Candidate regions from SNP array or homozygosity mapping of exome data. 

Individual 4. 
Homozygous for 
TBC1D24 mutation. 
Region containing 
TBC1D24 is 
emboldened below. 

Individual 8. 
Homozygous for 
TBC1D24 mutation. 
Region containing 
TBC1D24 is 
emboldened below. 

Individuals 12a and b. 
TBC1D24 is not 
mutated and is not in 
the regions of 
haplotype sharing 
between affected 
siblings. 

Individual 18. 
TBC1D24 is not 
mutated and is not in 
the regions of 
homozygosity. 

Individual 23. 
TBC1D24 is not 
mutated and is not in 
the regions of 
homozygosity. 

Individual 24. 
TBC1D24 is not 
mutated and is not in 
the regions of 
homozygosity. 

chr1:18559122-48222050 
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Supplementary Table 6. Review of the expression data on TBC1D24 in human and mouse tissues, detected at the level of mRNA or protein, from 

publications or public databases. See also Supplementary Figure 1. 

Source and 
reference 

Method Species Summary Link 

Manuscript by 
Guven et al.20 

RNA -  real-
time PCR 

Mouse 
High expression of the RNA in the parietal cortex, corpus 
callosum and brainstem, and they showed that non-neural 
tissues express  isoform 2 that lacks the short third exon. 

 

Manuscript by 
Falace et al.21 

RNA in situ 
hybridization 

Mouse 
High expression of the RNA in the brain, more specifically in the 
deep cortical layers of the neocortex and in the hippocampus. 

 

Allen Brain 
Atlas22 

RNA  in situ 
hybridization 

Mouse 
Highest levels are seen in the isocortex (all regions including 

auditory areas, highest in somatomotor area) and the 
hippocampal formation (Ammon's horn and the dentate gyrus). 

http://mouse.brain-
map.org/experiment/show?id=69531049. 

Eurexpress 
Transcriptome 

Atlas23 

RNA  in situ 
hybridization 

Mouse 
High levels of RNA are detected in the embryonic mouse brain, 
spinal cord, peripheral nervous system, ganglia, eye, nose and 

liver. 

http://www.eurexpress.org/ee/databases/as
sayMontage.jsp?assayID=euxassay_0109

49. 

BioGPS24 
RNA  

microarray 
Mouse 

Higher levels in the salivary and adrenal glands, various bone 
marrow-derived cells, osteoclasts, osteoblasts, retinal cells, and 
various regions of the brain (cortex, amygdala, hippocampus, 

hypothalamus, cerebellum, olfactory bulb). 

http://biogps.org/#goto=genereport&id=574
65. 

Geneinvestiga
tor25 

RNA  
microarray 

Human 
and 

mouse 

Highest expression in mice is in the cortex and hippocampus, 
and intermediate levels in other regions of the brain, the retina, 
the peripheral nervous system, the intestinal tract, osteoclasts, 

the liver and some bone marrow-derived cells. In human tissues, 
highest levels are in pyramidal neurons, various regions of the 

brain, the kidney, the salivary glands, the adipose tissue, 
osteoblasts, the thyroid, the liver and mammary glandular cells. 

https://www.genevestigator.com. 

RNA-seq 
Atlas26 

RNA-seq Human High levels in the hypothalamus and the kidney. http://medicalgenomics.org/rna_seq_atlas. 

Human 
Protein Atlas27 

Immunohist
ochemistry 

Human 
High levels were detected in glandular cells of the digestive tract 

and the uterus, in renal tubular cells, and in chondrocytes. 
http://www.proteinatlas.org/ENSG0000016

2065/normal. 
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Supplementary Table 7. Coverage data for candidate genes. Included are the five genes encoding proteins with TLDc domain (including TBC1D24) and 

for RAB3GAP2, in the 10 samples without TBC1D24 mutations. For TBC1D24, regions with low coverage were visually assessed on BAM files and 

Sanger sequenced if not covered, in order not to miss a mutation. The average proportion of coding bases with at least 10X coverage for TBC1D24 was 

100% for the Nimblegen Baylor VCRome capture reagent, 94% for the Agilent SureSelect capture reagent, and 90% for the Illumina TruSeq capture 

reagent. 

Gene name Transcript ID Average coverage for coding bases % of coding bases with ≥10X coverage 

TBC1D24 NM_001199107 66X 97.2% 

NCOA7 NM_001122842 125X 99.9% 

OXR1 NM_001198532 131X 99.3% 

KIAA1609 NM_020947 89X 95.4% 

C20orf118 NM_080628 75X 92.8% 

RAB3GAP2 NM_012414 147X 99% 
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Supplementary Table 8. Candidate gene analysis from exome data in 10 individuals without TBC1D24 mutations. The same strategy for exome analysis 

was applied as described in the methods and Table 1. Genes with variants in three or fewer samples from the automated output are still being considered 

as candidates at the moment. The names of the genes where rare/novel variants were detected in multiple samples by the automated output for the 

recessive model are given in the next table. 

 
Recessive inheritance model De novo dominant inheritance model 

Exomes with genes in common 
(every possible combination of 

cases) 

Automated output: 
Genes with rare or 

novel  variants 

After visualization 
and removal of false-

positives 

Automated output: 
Genes with rare or 

novel  variants 

After visualization and 
removal of false-

positives 

10 exomes 7 0 8 0 

9 exomes 3 0 8 0 

8 exomes 2 0 7 0 

7 exomes 6 0 16 0 

6 exomes 4 0 27 0 

5 exomes 5 0 38 0 

4 exomes 2 0 74 0 

3 exomes 14 
Analysis ongoing, 

candidate genes need 
consideration 

165 
Analysis ongoing, 

candidate genes need 
consideration 

2 exomes 41 503 

Single exome 288 2604 
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Supplementary Table 9. Gene names for recessive model from exome data in 10 individuals without TBC1D24 mutations. 

Samples with 
genes in 
common 

Automated output: Genes with rare or novel  variants 

10 MUC4, ZNF595, ZMAT1, ATP7A, VBP1, abParts, C21orf62 

9 DGKK, ZNF761, BCORL1 

8 TEX13A, ABP1 

7 ARSD, HLA-B, VCX2, DNHD1, C17orf100, UHRF1 

6 IQSEC1, TREH, MCF2, SEMA3B 

5 LRRC37A, ZNF492, CCDC66, SGK110, NFKBIZ 

4 HDHD1, FLJ22184 

3 
GGT2, MXRA5, GOLGA6L6, WWC3, WDR33, FAM86B2, FICD, ZNF705A, SOCS1, 

LOC728405, SYNM, SLC25A5, TMEM185A, MAL2 

2 

TRY6, CD177, CRIPAK, NBPF1, ZNF718, FAM75A3, ODZ1, SIRPA, AKR1D1, 
WWC1, TMEM191B, PCDH11Y, LILRB1, FAM90A10, MAGEA6, CXorf22, ZNF598, 

NACA, ADH5, C19orf55, BC073807, JPX, NBPF16, TRIL, CTAGE4, MAPK8IP2, 
AP1S3, AKAP3, RBBP7, LAMB2, DQ580909, OTC, AGAP5, C14orf169, MAGIX, 

AVPI1, TCEAL4, SERPINA7, OPN1LW, POLR2J2, LOC642846 

 

 

  



Page 17 of 22 
 

Supplementary Figure 1. Conservation across species of the residues affected by missense substitutions. The blue highlights the residues for the 

percentage of identity in this alignment (darker being the highest identity). PhastCons score17: conservation of the mutated nucleotide among 17 vertebrate 

species, with 1 being the most conserved. Genomic Evolutionary Rate Profiling (GERP) score18: a score for constrained DNA elements in 29 mammalian 

species, ranges from -12.3 to 6.17, with 6.17 being the most conserved. Grantham score19: categorizes codon replacements into classes of increasing 

chemical dissimilarity, ranges from 5 to 215, with 5 being the most similar. The alignment was performed using the Clustal Omega program28 on the 

Uniprot website (www.uniprot.org). Graphical representation of the alignment was performed using JalView (www.jalview.org). Uniprot IDs for the proteins 

used in the alignment of TBC1D24 homologues are Q9ULP9 for Homo sapiens, F6TFP7 for the Rhesus macaque, F1Q1S9 for the dog, Q3UUG6 for the 

mouse, G3TG12 for the african elephant, G1DG11 for the goat, F1NEU9 for the chicken, Q08CX5 for the western clawed frog, F6S4P5 for the gray short-

tailed opossum, E7FCR8 for the zebrafish, Q7Q0N9 for the fruit fly, D3DML7 for the african malaria mosquito, and H2KZ54 for the roundworm. 
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Supplementary Figure 2. Additional Tbc1d24 expression data from public databases. A) Expression 

(blue) in adult mouse brain sagittal section using RNA ISH from the Allen Institute for Brain Science22. B) 

High expression (purple staining) in the embryonic mouse brain, spinal cord and liver from the Eurexpress 

Transcriptome Atlas23. C) High expression in the hypothalamus and kidneys by RNAseq from the RNA-

seq Atlas26. 
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Supplementary Figure 3. Tbc1d24 expression profiling. A) Expression of Tbc1d24 in C57BL/6 mouse 

chondrocytes in the distal phalanges of the forelimbs at age P2. B) Same as in panel A but without the 

primary antibody to demonstrate the background signal. C) Detection of mouse Tbc1d24 in mouse 

embryonic brain at E16.5 (embryos selected to correlate with in situ hybridization data available in mouse 

embryos, see next figure). D) Control without primary antibody to demonstrate specificity of antibody. E) 

Western blot of mouse brain lysate protein to demonstrate the specificity of the antibody. The computed 

molecular weight of the unmodified isoform 1of mouse Tbc1d24 is 63 kDa. F) Expression analysis for 

Tbc1d24 in various newborn mouse tissues An ANOVA on ranks analysis showed that the median 

expression varied between the tissues (p=0.026). *: p<0.05 by a comparison between the groups using 

Dunnett’s method. 
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Supplementary Discussion. 2-Oxoglutaric aciduria and DOORS syndrome types. 

 

Increased 2-oxoglutaric acid is often found in the blood and urine in DOORS syndrome, but is not 

pathognomonic. Levels can fluctuate between normal values to very high values over time in the same 

patient29,30 and are not elevated in all affected individuals. As such, its absence cannot be used to 

exclude a diagnosis of DOORS syndrome. 2-oxoglutaric aciduria is found in several metabolic disorders, 

but rarely in association with dysmorphisms such as in DOORS syndrome31. Patton et al. noted that α-

hydroxyglutarate, a metabolite of 2-oxoglutarate, is also elevated in the urine, thus suggesting that the 

activity of the 2-oxoglutarate dehydrogenase complex (made of the E1, E2 and E3 components) was 

intact29. Surrendran et al. found decreased E1 activity in patient fibroblasts and white blood cells32, while it 

was normal in the patient described by James et al.33 . Patton et al. suggested separating DOORS 

syndrome from autosomal dominant deafness and onychodystrophy29, now called DDOD syndrome [MIM 

124480], and James et al. also excluded from their review cases with either dominant inheritance or 

without intellectual disability or seizures33. Rajab et al. suggested dividing DOORS syndrome into type I, 

with more severe neurological involvement (in terms of intellectual disability and seizures) and type II with 

a milder neurological disease and course34. They noted that 2-oxoglutaric aciduria was present in the 

more severe cases and in none of the milder cases. However, as Felix et al. demonstrated, several 

individuals with type I (or more severe) DOORS syndrome do not have 2-oxoglutaric aciduria35. James et 

al. also concluded that the division between type I and type II should not be used, in part because of 

clinical heterogeneity even within families33.  

 

We suggest three hypotheses for the source of 2-oxoglutaric aciduria found in DOORS in light of our 

findings.  2-oxoglutarate might originate from increased glutamate release from neurons (suggested by 

increased neurotransmitter release in the Skywalker Drosophila studies36) with subsequent metabolism to 

2-oxoglutarate in astrocytes. Another hypothesis is that vesicle-bound aspartate aminotransferase, 

converting 2-oxoglutarate and aspartate to glutamate for vesicular transport37, could be secondarily 

affected by abnormal vesicular transport. We could partly test these hypotheses in the future using 

cerebrospinal fluid or magnetic resonance spectroscopy of the affected individuals. Finally, 2-oxoglutarate 

could originate from defective activity of the TLDc domain, the substrates and catalytic activity of which 

are unknown, but could involve 2-oxoglutarate. This is less likely given that the mutations are often far 

from the TLDc domain (see Figure 3D).  
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